b2api
B2000++ API Reference Manual, VERSION 4.6
 
Loading...
Searching...
No Matches
b2material_stress_3d_mixed.H
1//------------------------------------------------------------------------
2// b2material_stress_3d_mixed --
3//
4// Base class for materials used by 3D displacement/pressure
5// elements.
6//
7// written by Thomas Ludwig
8// Neda Ebrahimi Pour <neda.ebrahimipour@dlr.de>
9//
10// (c) 2009-2015,2016 SMR Engineering & Development SA
11// 2502 Bienne, Switzerland
12//
13// (c) 2023 Deutsches Zentrum für Luft- und Raumfahrt (DLR) e.V.
14// Linder Höhe, 51147 Köln
15//
16// All Rights Reserved. Proprietary source code. The contents of
17// this file may not be disclosed to third parties, copied or
18// duplicated in any form, in whole or in part, without the prior
19// written permission of SMR.
20//------------------------------------------------------------------------
21
22#ifndef B2MATERIAL_STRESS_3D_MIXED_H_
23#define B2MATERIAL_STRESS_3D_MIXED_H_
24
25#include "elements/properties/b2solid_mechanics.H"
27
28namespace b2000 {
29
30class MaterialStress3DMixed : virtual public SolidMechanics {
31public:
32 // Return the number of layers.
33 virtual int number_of_layer() const { return 1; }
34
35 // Return the laminate geometric position relative to the
36 // mid-surface of the element.
37 virtual void laminate(
38 b2linalg::Vector<double, b2linalg::Vdense_constref> nodes_interpolation,
39 double& laminate_begin, double& laminate_end) const {
40 laminate_begin = -1;
41 laminate_end = 1;
42 }
43
44 // Return the layer geometric position relative to the
45 // mid-surface of the element.
46 virtual void layer(
47 b2linalg::Vector<double, b2linalg::Vdense_constref> nodes_interpolation,
48 const int layer_id, double& layer_begin, double& layer_end) const {
49 layer_begin = -1;
50 layer_end = 1;
51 }
52
53 virtual double get_density(const int layer_id) const {
55 return 0.0;
56 }
57
58 virtual void get_stress(
59 Model* model, const bool linear, const EquilibriumSolution equilibrium_solution,
60 const double time, const double delta_time, GradientContainer* gradient_container,
61 SolverHints* solver_hints, const Element* element, const double el_coordinates[3],
62 const int layer_id,
63 b2linalg::Vector<double, b2linalg::Vdense_constref> nodes_interpolation,
64 const double bg_coordinates[3], const double covariant_base[3][3], const double volume,
65 const double deformation_gradient[3][3], const double velocity[3],
66 const double acceleration[3], const double interpolated_pressure, double stress[6],
67 double& pressure, double CUU[21], double CUP[6], double& CPP, double inertia_force[3],
68 double& density) = 0;
69
70protected:
71 inline void eval_linear_strain(const double F[3][3], double E[6]) const {
72 const double f00 = F[0][0];
73 const double f01 = F[1][0];
74 const double f02 = F[2][0];
75 const double f10 = F[0][1];
76 const double f11 = F[1][1];
77 const double f12 = F[2][1];
78 const double f20 = F[0][2];
79 const double f21 = F[1][2];
80 const double f22 = F[2][2];
81
82 E[0] = f00 - 1.0;
83 E[1] = f11 - 1.0;
84 E[2] = f22 - 1.0;
85 E[3] = f01 + f10;
86 E[4] = f12 + f21;
87 E[5] = f02 + f20;
88 }
89
90 inline void eval_green_lagrange_strain(const double F[3][3], double E[6]) const {
91 const double f00 = F[0][0];
92 const double f01 = F[1][0];
93 const double f02 = F[2][0];
94 const double f10 = F[0][1];
95 const double f11 = F[1][1];
96 const double f12 = F[2][1];
97 const double f20 = F[0][2];
98 const double f21 = F[1][2];
99 const double f22 = F[2][2];
100
101 E[0] = 0.5 * (f00 * f00 + f10 * f10 + f20 * f20 - 1.0);
102 E[1] = 0.5 * (f01 * f01 + f11 * f11 + f21 * f21 - 1.0);
103 E[2] = 0.5 * (f02 * f02 + f12 * f12 + f22 * f22 - 1.0);
104 E[3] = f00 * f01 + f10 * f11 + f20 * f21;
105 E[4] = f01 * f02 + f11 * f12 + f21 * f22;
106 E[5] = f00 * f02 + f10 * f12 + f20 * f22;
107 }
108
109 inline double delta(const int a, const int b) { return (a == b ? 1.0 : 0.0); }
110
111 inline void s_eq_c_mul_e(double s[6], const double c[21], const double e[6]) {
112 const int ind[6][6] = {{0, 1, 2, 3, 4, 5}, {1, 6, 7, 8, 9, 10},
113 {2, 7, 11, 12, 13, 14}, {3, 8, 12, 15, 16, 17},
114 {4, 9, 13, 16, 18, 19}, {5, 19, 14, 17, 19, 20}};
115
116 for (int i = 0; i < 6; ++i) {
117 double value = 0.0;
118
119 const int* iind = ind[i];
120 for (int j = 0; j < 6; ++j) { value += c[iind[j]] * e[j]; }
121 s[i] = value;
122 }
123 }
124
125 // Transform the 2nd Piola-Kirchhoff stress to the Cauchy
126 // stress. The stresses are in the Voight notation [sxx, syy,
127 // szz, sxy, syz, sxz].
128 static inline void piola_2_stress_to_cauchy_stress(
129 const double F[3][3], // Deformation gradient, column-major.
130 const double S[6], // 2nd Piola-Kirchhoff stress (Voight not.).
131 double T[6] // Cauchy stress (Voight notation).
132 ) {
133 const double f00 = F[0][0];
134 const double f01 = F[1][0];
135 const double f02 = F[2][0];
136 const double f10 = F[0][1];
137 const double f11 = F[1][1];
138 const double f12 = F[2][1];
139 const double f20 = F[0][2];
140 const double f21 = F[1][2];
141 const double f22 = F[2][2];
142
143 // Get the determinant of the deformation gradient tensor.
144 const double det = determinant_3_3(F);
145 const double det_inv = 1.0 / det;
146
147 T[0] = f00 * f00 * S[0] + f01 * f01 * S[1] + f02 * f02 * S[2] + 2 * f00 * f01 * S[3]
148 + 2 * f01 * f02 * S[4] + 2 * f02 * f00 * S[5];
149
150 T[1] = f10 * f10 * S[0] + f11 * f11 * S[1] + f12 * f12 * S[2] + 2 * f10 * f11 * S[3]
151 + 2 * f11 * f12 * S[4] + 2 * f12 * f10 * S[5];
152
153 T[2] = f20 * f20 * S[0] + f21 * f21 * S[1] + f22 * f22 * S[2] + 2 * f20 * f21 * S[3]
154 + 2 * f21 * f22 * S[4] + 2 * f22 * f20 * S[5];
155
156 T[3] = f00 * f10 * S[0] + f01 * f11 * S[1] + f02 * f12 * S[2]
157 + (f00 * f11 + f01 * f10) * S[3] + (f01 * f12 + f02 * f11) * S[4]
158 + (f02 * f10 + f00 * f12) * S[5];
159
160 T[4] = f10 * f20 * S[0] + f11 * f21 * S[1] + f12 * f22 * S[2]
161 + (f10 * f21 + f11 * f20) * S[3] + (f11 * f22 + f12 * f21) * S[4]
162 + (f12 * f20 + f10 * f22) * S[5];
163
164 T[5] = f20 * f00 * S[0] + f21 * f01 * S[1] + f22 * f02 * S[2]
165 + (f20 * f01 + f21 * f00) * S[3] + (f21 * f02 + f22 * f01) * S[4]
166 + (f22 * f00 + f20 * f02) * S[5];
167
168 for (int i = 0; i < 6; ++i) { T[i] *= det_inv; }
169 }
170};
171
172} // namespace b2000
173
174#endif // B2_MATERIAL_STRESS_3D_MIXED_H_
#define THROW
Definition b2exception.H:198
Contains the base classes for implementing Finite Elements.
Definition b2boundary_condition.H:32
T determinant_3_3(const T a[3][3])
Definition b2tensor_calculus.H:669
GenericException< UnimplementedError_name > UnimplementedError
Definition b2exception.H:314