17#ifndef __B2_RIGHT_STRETCH_TENSOR_H__
18#define __B2_RIGHT_STRETCH_TENSOR_H__
77 void compute(
const double F[3][3],
const bool second =
false);
83 void compute_numerically(
const double F[3][3],
const bool second);
88 static bool check(
const double F[3][3],
const bool verbose =
true);
Definition b2right_stretch_tensor.H:58
double DU[6][9]
Definition b2right_stretch_tensor.H:123
double DR[9][9]
Definition b2right_stretch_tensor.H:127
double DDU[6][9][9]
Definition b2right_stretch_tensor.H:132
RightStretchTensor_3_3()
Definition b2right_stretch_tensor.H:61
double U_3_3[3][3]
Definition b2right_stretch_tensor.H:113
void compute(const double F[3][3], const bool second=false)
Definition b2right_stretch_tensor.C:29
RightStretchTensor_3_3(const double F[3][3], const bool second=false)
Definition b2right_stretch_tensor.H:64
double R_3_3[3][3]
Definition b2right_stretch_tensor.H:109
double U[6]
Definition b2right_stretch_tensor.H:119
double R[9]
Definition b2right_stretch_tensor.H:116
Contains the base classes for implementing Finite Elements.
Definition b2boundary_condition.H:32
void inner_product_3_3_NN(const T a[3][3], const T b[3][3], T c[3][3])
Definition b2tensor_calculus.H:808
void polar_decomposition(const double F[3][3], double R[3][3], double U[3][3])
Definition b2right_stretch_tensor.H:38
void inner_product_3_3_TN(const T a[3][3], const T b[3][3], T c[3][3])
Definition b2tensor_calculus.H:823
void svd_3_3(const double A[3][3], double U[3][3], double S[3], double V[3][3])
Definition b2singular_value_decomposition.H:47